
Software and System Modeling manuscript No.
(will be inserted by the editor)

MUPPIT: A Method for Using Proper Patterns in Model
Transformations

Mahsa Panahandeh · Mohammad

Hamdaqa · Bahman Zamani · Abdelwahab

Hamou-Lhadj ·

Received: date / Revised version: date

Abstract Context: Model transformation plays an important role in developing
software systems using the Model-Driven Engineering paradigm. Examples of ap-
plications of model transformation include forward engineering, reverse engineering
of code into models, and refactoring. Poor-quality model transformation code is
costly and hard to maintain. There is a need to develop techniques and tools that
can support transformation engineers in designing high-quality model transforma-
tions.

Objective: The goal of this paper is to present a process, called MUPPIT
(Method for Using Proper Patterns in Model Transformations), which can be used
by transformation engineers to improve the quality of model transformations by
detecting anti-patterns in the transformations and automatically applying pattern
solutions.

Method: MUPPIT consists of four phases: (1) identifying a transformation anti-
pattern, (2) proposing a pattern-solution, (3) applying the pattern-solution, and
(4) evaluating the transformation model. MUPPIT takes a transformation design
model (TDM), which is a representation of the given transformation, to search
for the presence of an anti-pattern of interest. If found, MUPPIT proposes a pat-

Mahsa Panahandeh
E-mail: panahand@ualberta.ca
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Al-
berta, Canada.

Mohammad Hamdaqa
E-mail: mhamdaqa@ru.is
Department of Computer Engineering and Software Engineering, Polytechnique Montréal,
Canada.
School of Computer Science, Reykjavik University, Iceland.

Bahman Zamani
E-mail: zamani@eng.ui.ac.ir
MDSE Research Group, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Abdelwahab Hamou-Lhadj
E-mail: wahab.hamou-lhadj@concordia.ca
Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec,
Canada.

2 Mahsa Panahandeh et al.

tern solution from a catalogue of patterns to the transformation engineer. The
application of the pattern solution results in the restructuring of the TDM. While
MUPPIT, as a process, is independent of any transformation language and trans-
formation engineering framework, we have implemented an instance of it as a tool
using transML and MeTAGeM, which support exogenous transformations using
rule-based transformation and OCL based languages such as ATL and ETL.

Results:We evaluate MUPPIT through a number of case studies in which we
show how MUPPIT can detect four anti-patterns and propose the corresponding
pattern solutions. We also evaluate MUPPIT by collecting a number of metrics to
assess the quality of the resulting transformations. The results show that MUPPIT
optimizes the transformations by improving reusability, modularity, simplicity, and
maintainability, as well as decreasing the complexity.

Conclusion: MUPPIT can help transformation engineers to produce high-quality
transformations using a pattern-based approach. An immediate future direction
would be to experiment with more anti-patterns and pattern solutions. Moreover,
we need to implement MUPPIT using other transformation engineering frame-
works.

Keywords Transformation Pattern, Transformation Anti-pattern, Model Driven En-
gineering, Transformation Engineering,

1 Introduction

Models play an important role in specifying, understanding, analyzing, and visu-
alizing software systems [1]. In Model-Driven Engineering (MDE), model trans-
formation, converting a model from one domain into another, is as essential as
the models themselves [2]. Examples of model transformations include generat-
ing executable code from models (forward engineering), reverse engineering code
to models (backward engineering), refactoring, and migration between different
platforms [3].

Similar to other software artifacts, the quality of model transformations can be
improved by applying engineering principles [3, 4, 5, 6, 7, 8]. Several “transforma-
tion engineering” frameworks have been proposed to generate and manage models
and facilitate transformations. In recent years, a considerable effort has been de-
voted to the definition of transformation patterns to assist software developers in
developing effective transformation models [9, 10, 11, 12, 13], similar to the way
design patterns are used in software development [14, 15]. An important aspect of
pattern application is the ability to identify opportunities when a specific pattern
is needed and to apply the pattern correctly on the transformation. To this end,
many studies have been proposed, ranging from the development of metrics for the
evaluation of transformation models according to predefined patterns [13, 16, 17]
to the automatic application of patterns on a transformation design model (TDM),
which is a representation of a transformation [7, 18, 19, 20]. Although these ap-
proaches have been shown to be useful, they only provide a partial solution to the
broader problem of automatic application of transformation patterns. In addition,
they almost always require from developers to manually (or semi-automatically)
examine the transformation structure in order to recognize situations where the
application of pattern solutions is needed [13].

MUPPIT: A Method for Using Proper Patterns in Model Transformations 3

In this paper, we propose a process, called MUPPIT (Method for Using Proper
Patterns in Model Transformation), which consists of four steps: I) identifying the
transformation anti-patterns, II) proposing transformation pattern solutions, III)
applying the pattern solutions, and IV) evaluating the resulting transformation
design model and providing feedback. MUPPIT takes a TDM as input and gener-
ates a new pattern-based model as output, which can then be evaluated to show
the benefits of using the transformation pattern solution.

MUPPIT is implemented as an Eclipse plug-in and one of its distinctive fea-
tures over existing frameworks is that it enables the definition and generation of
TDMs using high-level abstraction models as opposed to formal specification lan-
guages. The current implementation of MUPPIT relies on transML [3, 21] and
MeTAGeM [6, 22] specifications, which support exogenous transformations using
mapping (rule) based transformation and OCL based languages such as ATL and
ETL. Although, MUPPIT uses transML and MeTAGeM, we believe that it is
readily extensible to other frameworks such as TROPIC [5], UMLRSDS [23], and
the framework proposed by Didonet Del Fabro [24].

The benefits of the MUPPIT approach are demonstrated using three case
studies. Firstly, we perform a walk-through of the MUPPIT process in a case study
to verify the flow and logic of the MUPPIT steps in details. Secondly, MUPPIT
performance is assessed for all case studies using a quantitative evaluation in which
several metrics such as syntactic complexity and modularity are measured on the
transformations before and after using MUPPIT. These metrics can be used to
evaluate a TDM against many indicators of inefficiencies and poor quality, i.e.,
bad smells. Moreover, we use these metrics in a feedback loop to further suggest
new patterns that can enhance the quality of the generated transformation model.

MUPPIT is built on our previous study [17], where we showed how two specific
model transformation patterns, namely the Phased Construction and the Auxiliary

Model Patterns, can be recommended to transformation engineers on the basis of
analyzing TDMs. MUPPIT is a major extension to the work presented in [17].
More precisely, this paper makes the following new contributions:

– Proposing an end-to-end pattern-based transformation process that enables
transformation engineers to automatically identify anti-patterns and apply the
corresponding pattern solutions.

– Defining several bad smells that may indicate the presence of anti-patterns by
analyzing TDMs.

– Implementing the MUPPIT process as an Eclipse plug-in using Epsilon family
of languages (e.g., EOL, ETL, EPL) [25] and Java.

– Applying MUPPIT to three case studies to detect four predefined anti-patterns
and propose the corresponding pattern solutions.

The rest of this paper is structured as follows. Section 2 provides preliminary
knowledge about transformation engineering and an overview of the transforma-
tion engineering frameworks. Section 3 introduces the concept of transformation
patterns and anti-patterns and offers four examples of anti-patterns and their cor-
responding pattern solutions. In Section 4, the MUPPIT approach is explained
using a motivation scenario. Section 5 presents the framework implementation.
MUPPIT evaluation is presented in Section 6, followed by threats to validity in
Section 7. Section 8 reviews the related work. Finally, Section 9 concludes the pa-
per by summarizing the main contributions and indicating areas for future work.

4 Mahsa Panahandeh et al.

2 Background on Transformation Engineering

2.1 Transformation Engineering

In MDE, models are the main artifacts that drive software development [26]. A
key aspect of MDE is the ability to convert models from one type (or domain) to
another. Modeling approaches employ di�erent speci�cation languages for de�n-
ing new modeling languages (meta-models), specifying models, and de�ning the
transformations between models at di�erent levels of abstraction. Model transfor-
mation is seen as code written using a transformation language to transform a
source model into a target model. Developing transformations tends to be a chal-
lenging and error-prone process [3]. This is due to the complexity of the syntax
of the transformation languages, the need to understand the target and source
model syntax and semantics, the lack of best practices, and the limited expertise
in these languages. In MDE, once the transformations are written and deployed,
they are treated as a black box that does the transformation magic. Any error in
the transformation code can break the whole MDE solution, not to mention that
any ine�ciencies would result in important performance issues.

For these reasons, developing high-quality transformations is crucial for the
successful adoption of the MDE paradigm in software engineering. To this end,
many researchers have examined the application of best software development
practices to the development of model transformations [3, 4, 6, 27, 28], which led
to the emergence of a relatively new �eld, often referred to as model transformation
engineering or \transformation engineering" for short [3].

In the following section, we review two state-of-the-art transformation engi-
neering frameworks, and elaborate on how our study in related to these frame-
works.

2.2 Transformation Engineering Frameworks

Transformation engineering frameworks aim to enforce the adoption of best prac-
tices of software engineering when developing transformation models. Meaning
that transformations should be analyzed, designed, implemented, tested, and main-
tained based on sound software engineering techniques. This paper uses two trans-
formation engineering frameworks, namely, transML [3, 21] and MeTAGeM [22],
which, to the best of our knowledge, are the most comprehensive transformation
engineering frameworks to date.

transML is a family of modeling languages, which covers the whole life cycle of
transformation development, i.e., requirements analysis, architecture, design, im-
plementation, and testing. These phases result in engineering the transformation
generation. transML provides a complete transformation development environ-
ment, including notation, methods, and tools. For each phase of this framework,
there is a meta-model which provides notations for the transformation engineer to
create models that conform to the meta-model of that phase. transML constructs
the transformation following the MDE approach in a semi-automatic manner. To
develop a transformation using transML, �rst the transformation requirements
are speci�ed as a requirement model. This model is then transformed into other
models, and �nally the implementation models of the transformation are built. In

MUPPIT: A Method for Using Proper Patterns in Model Transformations 5

the design phase of transML, the design models can be expressed in two levels of
abstractions: high-level and low-level [3, 21].

MeTAGeM is another transformation framework that implements transforma-
tions based on the MDE principles [29]. MeTAGeM works on the levels de�ned
in Model Driven Architecture (MDA) [30]. That means, implementing a transfor-
mation starts from Platform Independent Transformation (PIT), which describes
relations between the source and target meta-models. After that, the Platform
Speci�cation Transformation (PST) model is created from the PIT automatically.
The generated intermediate model contains the de�nition of the transformation
rules based on the high-level speci�cations presented in the PIT model. The next
step is creating a Platform Dependent Transformation (PDT) that facilitates mi-
gration between di�erent abstract levels. This model refactors the PST model
based on the selected transformation language. Finally, the transformation code
is generated from the PDT [6, 22].

In this research, we used transML and MeTAGeM to generate transformation
design models (TDMs) in our case studies. A TDM, which speci�es a transfor-
mation, is the main input of the MUPPIT process. A TDM can be a high-level
model, such as a mapping model of transML or a PIT model in MeTAGeM, or it
can be a low-level design model of transML or PST model in MeTAGeM. Generat-
ing the transformation code from TDMs in MUPPIT is performed using transML
or MeTAGeM. Therefore, scheduling the transformation rules, managing the ex-
ecution schema, and maintaining the transformation behavior are dependent on
these frameworks and are out of the scope of MUPPIT. transML uses a behav-
ioral design model, in addition to a TDM, to de�ne traces between the models and
action language rules for generating a transformation code. MeTAGeM employs
PDT models for specifying the design model elements in the action language. More
information on the steps for converting these models into transformation code and
managing the execution of the transformations in these frameworks can be found
in [3, 6, 21, 22].

3 Transformation Patterns and Anti-patterns

Similar to software development, the design of model transformations can bene�t
from the concepts of patterns and anti-patterns. Iacob et al. de�ne a transforma-
tion pattern as a reusable solution to a general model transformation problem [11].

This is similar to the concept of design patterns in software development, which
is de�ned as a reusable solution to a commonly occurring design problem [14].

We de�ne a transformation anti-pattern as a common form of transformation
that may lead to negative consequences. This de�nition is inline with the de�nition
of Brown et al. [31] when referring to an anti-pattern in software development, as
a pattern in an inappropriate context, which can result in symptoms and conse-
quences.

It should be noted that while the software engineering community seems to
agree on the de�nition of what a good pattern is, the community seems to use
di�erent terminologies to describe a bad pattern or a repeatable code or design
that may result in bad consequences, such as an anti-pattern, code clone, and
code smell. For example, Tahir et al. [32] use the terms anti-pattern and code
smell interchangeably.

6 Mahsa Panahandeh et al.

These concepts are however di�erent. A code smell is de�ned as \a surface
indication that usually corresponds to a deeper problem in the system" [33]. It is
an indicator, a gauge, a meter, or a measure. An anti-pattern, on the other hand,
is the reason behind the problem and also the possible reason behind a bad smell.
For example, a poor performance that is measured through the transformation
execution time is an indicator of a deeper problem. If we can correlate this with
a set of repeatable code instructions or design constructs, then we identi�ed an
anti-pattern (e.g., the Return-First Command anti-pattern). A simple and known
example in software engineering is the Large Class bad smell [34] which refers to
a class trying to perform too much. A Large Class indicates some maintainability
di�culties which can be caused by an adverse design or programming solutions,
such as Swiss Army Knife anti-pattern [33]. Swiss Army Knife happens when the
developer speci�es or implements an interface class for every need of the software.
This bad solution can be indicated by A Large Class smell.

Identifying anti-patterns and using the appropriate patterns in response can
help in (i) restructuring complex transformations into modular sub-transformations,
(ii) simplify individual mapping rules of a transformation, (iii) improve the e�-
ciency of a transformation by removing redundant and duplicated evaluations, (iv)
optimizing execution strategies, and (v) simplifying complex model navigation [16].

In the next section, we identi�ed four model transformation anti-patterns
(those are linked to matching rules), namely the Spaghetti Transformation trans-
formation, Frequent Invocation , Return-First Command , and Boat Anchor . For each
anti-pattern, we also suggest a pattern solution, which will increase the quality of
the transformation. Each anti-pattern might be resolved by several solutions. In
this paper, we propose one pattern solution to each anti-pattern, except for one
of the case studies where we propose two pattern solutions. We intend to extend
MUPPIT to the detection of more anti-patterns and the recommendations of pat-
tern solutions in the future. We show the e�ectiveness of MUPPIT in identifying
these anti-patterns in the case study section.

We selected these four anti-patterns because they are commonly found in model
transformations as shown by Cuadrado et al. [12] and Lano et al. [13]. The MUP-
PIT process can be applied to other transformation scenarios in a similar way.
In addition, we selected these anti-patterns because they are based on mapping-
based transformation languages, and hence they can be used with transML and
MeTAGeM, the transformation engineering frameworks currently supported by
MUPPIT. In the following, we present the four anti-patterns and their corre-
sponding pattern solutions that are covered in this paper.

3.1 Spaghetti Transformation and Phased Construction

{ Anti-pattern: The Spaghetti Transformation anti-pattern occurs when the de-
veloper performs several transformation steps all in one phase. This usually
happens in complex transformation rules. There are several signs in the trans-
formation code that tells you if a developer is falling into this anti-pattern.
Example of these signs: (i) if a transformation rule contains an alternation of
quanti�ers (8 9 8), or uses a long alternation sequence, (ii) if the transforma-
tion rule is creating more than one target instance at once (in particular, if
the rule is referring to target elements at more than one hierarchical level).

MUPPIT: A Method for Using Proper Patterns in Model Transformations 7

Fig. 1 Object Indexing Pattern [13]

This anti-pattern reduces the comprehension of the transformation rule, which
makes it di�cult to maintain, verify, or reuse the rule.

{ Pattern Solution: Phased Construction [13] is a pattern which decomposes
one complicated transformation to separate rules. Each rule relates one source
model element (or a group of source model elements) to one target model ele-
ment. In fact, each rule works on one level of the target meta-model and does
not navigate more than one step in the entity composition hierarchy [13]. There
are two variations of the Phased Construction solution in constructing the target
elements using transformation rules: bottom-up and top-down approaches [13].
These two approaches de�ne the order of generating target elements or exe-
cuting transformation rules. In this paper, we used the top-down approach
for the Phased Construction pattern solution, meaning that we �rst generate
the top elements in the target meta-model hierarchy and then construct their
dependent elements (i.e., lower elements).

3.2 Frequent Invocation and Object Indexing

{ Anti-pattern: The Frequent Invocation anti-pattern occurs when a transforma-
tion expression frequently accesses objects or set of objects using a unique iden-
ti�er. Example of such expression: C :allInstances() ! select(id = v) ! any().
This anti-pattern can negatively a�ect the transformation execution perfor-
mance with a worst-case time complexity proportional to the number of the
invoked instances.

{ Pattern Solution: The Object Indexing pattern [13] provides a solution for the
Frequent Invocation anti-pattern. It presents an index map data structure to
be used instead of the selection command for accessing objects. This makes it
possible to look up the objects using the map structure and the entity primary
key. The structure of the Object Indexing pattern is shown in Figure 1, in
which, each entity of C is stored in the index map data structure of cmap in
a form like IndType ! C where IndType is the type of the entity's primary
key. Then, access to a C object with a key value of v is obtained by applying
cmapto v like in cmap.get(v). Hence, a map lookup is substituted for the select
expression. This pattern decreases the complexity of the transformation syntax
and execution time of the lookup [13].

3.3 Return-First Command and Usage of Iterators

{ Anti-pattern: In functional style based transformation languages, such as the
Object Constraint Language (OCL) [35], the access to objects can be imple-

8 Mahsa Panahandeh et al.

mented using di�erent iterators (e.g., any, exists, forAll). Using the wrong iter-
ator or the wrong order of operations can signi�cantly impact the performance
of the transformation. The Return-First Command anti-pattern is a common
ine�cient transformation anti-pattern that occurs when the developer tries to
access one element of a collection that satis�es a condition by using the wrong
command. Particularly, by using the select command followed by the command
�rst in OCL. In this anti-pattern, select is not the appropriate command to be
used sinceselect does not terminate as soon as the condition is satis�ed; in-
stead, it returns all the elements that satisfy the condition. For instance, using
the select command in collection ! select(e j e:condition) ! �rst (), when all the
elements after the middle of the collection satisfy the condition, returns n/2
elements, while the caller of the expression needs just one element.

{ Pattern Solution: Cuadrado et al. [12] propose Usage of Iterators pattern
as part of the recommendations for performance patterns that can be used to
optimize OCL-based model transformations. This pattern suggests that appro-
priate iterators, which terminate the calculation, by �nding the �rst element,
should be employed when there is no need to visit all the elements of a set.
Cuadrado et al. [12] suggested using any() in the ATL language as a solu-
tion in case of requesting an object with the unique identi�er attribute out
of all instances. We also used any() in both ATL and ETL languages for the
Return-First Command anti-pattern 1 .

3.4 Boat Anchor and Filtering

{ Anti-pattern: The size of the input transformation model has an impact on the
performance and cost of a transformation. Boat Anchor 2 anti-pattern occurs
when a large input model is transformed into a target model while many of
the elements in the input model are not used in the transformation. In fact
transformation t transforms input model of M to target Z while M consists
f m1,m2, , mng and Z consists f z1,z2, zng. Boat Anchor happens
when some of elements in the setf m1,m2, , mng are not transformed
(directly or indirectly) into the elements in the set f z1,z2, zng. This case
happens when the target (Z) is generated based on a subset of elements in M.

{ Pattern Solution: Filtering pattern, retrieved from [13] is an architectural
transformation pattern solution 3 , which removes unused elements from the
input model of a transformation. This solution checks the transformation rules

1 Cuadrado et al. [12] believe that, any can be used instead of select.�rst() command in
ATL whenever we are looking an object up with a unique attribute. For the ATL language,
they implement a �xed any version as well to improve the performance more. However, the
current paper employs the original version of any in ATL. We checked the Epsilon language and
identi�ed that any is shortcut as soon as an element validating condition is found. Therefore,
it is a well-de�ned iterator in contrast to the select command in Return-First Command . More
detail about any syntax in Epsilon can be found in [36].

2 Boat Anchor is a known anti-pattern in traditional software development, which refers to
a piece of software that serves no useful purpose in the current project [31].

3 Architectural model transformation patterns address solutions to the organizing of trans-
formations systems in order to enhance the modularity, veri�ability and e�ciency of these
systems [13].

MUPPIT: A Method for Using Proper Patterns in Model Transformations 9

Fig. 2 The MUPPIT approach

and exclude idle concepts in the input model, which are not transformed to
the target model. This pattern has also the ripple e�ect of reducing the size of
the input model.

4 MUPPIT: A Method for Using Proper Patterns In Transformations

In the previous section, we elaborated on the role of transformation patterns in
improving the quality of a transformation. Unfortunately, while a large number of
patterns have been developed, in the literature, to address several transformation
scenarios, many of these patterns are still not used in practice. The transforma-
tion development lacks awareness of the current patterns, or scenarios where these
patterns need to be applied. In this section, we present an approach that aims
to integrate transformation patterns into model transformation frameworks to en-
able transformation engineers to assess the developed transformations and use the
correct transformation pattern when applicable. The proposed process is called
MUPPIT, which stands for \Method for Using Proper Patterns In Transforma-
tions." Figure 2 illustrates the MUPPIT approach, which consists of four phases;
namely, P1) identifying the transformation anti-patterns, P2) proposing transfor-
mation pattern-solutions, P3) applying the pattern-solutions to the original TDM,
and P4) evaluating the new TDM and providing feedback.

In a nutshell, MUPPIT takes a TDM as the main input and uses a repository
of anti-patterns to create a new TDM by applying the four mentioned phases. The
anti-pattern repository comprises a set of anti-patterns and their corresponding
pattern solutions. In the following, these four phases are described.

10 Mahsa Panahandeh et al.

P1: In the �rst phase, MUPPIT checks the presence of the selected anti-pattern
in the transformation design model to verify if applying a transformation pattern
is necessary to improve the quality of the input TDM. If an anti-pattern is detected
in the TDM (i.e., a common form of transformation aw is detected), this warrants
the need for applying the corresponding transformation pattern solution.

P2: In the second phase, MUPPIT inspects the input TDM to see whether or
not the pattern solution is used. If the pattern solution is not used in the input
model, MUPPIT will propose the pattern solution as an option to improve the
input TDM.

P3: In the third phase, the proposed pattern is automatically applied to the
TDM after taking permission from the transformation engineer. Accordingly, a
new TDM is created.

P4: In the fourth phase, MUPPIT evaluates new generated TDM by measuring
several quantitative performance metrics to assess the e�ectiveness of the applied
pattern. These performance metrics are introduced in Section 6.4.1.

MUPPIT is a general process that is currently implemented using transML and
MeTAGeM frameworks. We intend to explore the use of other frameworks as part
of future work. In this paper, we show how MUPPIT was integrated with transML
and MeTAGeM frameworks. Accordingly, all models, anti-patterns, and pattern
solutions are speci�ed according to the speci�cations of transML and MeTAGeM.
The detailed steps of the MUPPIT approach are shown in Figure 3. To better
understand these steps, a motivation example of a model transformation scenario
will be presented, then the example will be used to explain each of the MUPPIT
phases in detail.

MUPPIT: A Method for Using Proper Patterns in Model Transformations 11

F
ig

.
3

T
he

M
U

P
P

IT
P

ro
ce

ss

12 Mahsa Panahandeh et al.

Fig. 4 UML2DB transformation meta-models

Fig. 5 The structure of UML2DB design model

4.1 Motivation Scenario: Transforming UML class diagrams to relational database
tables

A TDM is a model that speci�es the rules to transform a source model to a target
model. Transforming a UML class diagram into a relational database table is a
simple yet complete example, which has been commonly used as a case study by
many researchers [3, 6, 16, 37] to clarify the novelty of their new approaches. The
same TDM, which is called UML2DB, is employed in this paper as a motivation
scenario to explain how MUPPIT works. In the transformation UML2DB, the
classes of a given UML class diagram are converted into their corresponding tables
in a relational database schema. Each class attribute is transformed into a column
in the related table. Moreover, every table needs a speci�c column as a primary
key. The UML class diagram meta-model that represents the source meta-model
and the relational database meta-model that represents the target meta-model are
shown side by side in Figure 4.

A schematic view of UML2DB TDM is presented in Figure 5. This model
represents the conceptual structure of UML2DB TDM. It describes the design
model in an easy way. This TDM speci�es the relations between the elements
of the source and target meta-models in the UML2DB transformation. UML2DB
includes two mappings. These are Class-Map and Attribute-Map, which transform
classes to tables and attributes to columns, respectively. For every class, the Class-
Map generates a primary key in the related table.

As explained earlier, MUPPIT uses TDMs that are de�ned according to transML
or MeTAGeM speci�cations. In other words, MUPPIT uses TDMs that conform
to the transML or MeTAGeM metamodels. For this, it uses the transML or
MeTAGeM frameworks to specify the input TDMs. Each of these frameworks has
two design abstraction levels: a high abstraction level that is used to specify the
mapping relationships between the source and target model elements, and a low

MUPPIT: A Method for Using Proper Patterns in Model Transformations 13

Fig. 6 The structure of UML2DB design model (EMF format)

abstraction level that is used to specify the detail implementation of the trans-
formation. Figure 6 shows a TDM in EMF [38] format that corresponds to the
UML2DB transformation and is generated through the mapping phase using the
transML framework. Figures 21, 22, and 23 in Appendix, show the meta-models
of transML and MeTAGeM that are used in MUPPIT. The TDM models (i.e.,
instance models) that are speci�ed according to the high-level meta-model is re-
ferred to as \platform independent model (PIM)" in MeTAGeM, and \mapping
diagram" in transML, while a low-level TDM is referred to as \platform speci�c
model (PSM)" in both frameworks.

In the next subsections, the phases of MUPPIT are explained, and then every
phase is elucidated using the UML2DB example. We used the �rst two cases
explained in Section 3 as a sample set for transformation anti-patterns and pattern
solutions. Accordingly, we used MUPPIT to re�ne the UML2DB transformation
structure and generate a new TDM.

4.2 Identifying Transformation Anti-patterns

The input requirements for MUPPIT to be able to identify transformation anti-
patterns are the TDM, the transformation design meta-model, transformation
source and target meta-models, and the anti-patterns catalogue. The �rst phase of
MUPPIT starts by the transformation engineer selecting an anti-pattern from the
anti-pattern catalogue to check its presence in the input TDM. After selecting an
anti-pattern MUPPIT requires the TDM, the TDM meta-model, the source model
meta-model, and the target model meta-model. However, some anti-patterns (e.g.,
the Boat Anchor anti-pattern) require access to the source model as well. We expect
that a transformation engineering framework that supports the MUPPIT process
would allow enough exibility for transformation engineers to specify these mod-
els, which need to be speci�ed only once. Transformation engineers can apply
MUPPIT multiple times on the TDMs that work on the same models.

14 Mahsa Panahandeh et al.

After providing the required inputs, MUPPIT triggers the \Anti-pattern De-
tection" task shown in Figure 2. This task checks if the anti-pattern appears in
the input TDM. If there is no matching anti-pattern in the TDM, MUPPIT prints
the message \The anti-pattern is not detected" and proceeds to the �nal state
(i.e., select anti-pattern from the repository). If a match is identi�ed, MUPPIT
prints the message \The anti-pattern is detected" and proceeds to the next phase
(i.e., \Proposing Transformation Pattern Solutions"). The \Anti-pattern Detec-
tion" task uses structural constraint-based pattern matching, in which a matching
anti-pattern is de�ned as a set of constraints on the TDM meta-model. Here we
can distinguish between two types of matching constraints: relational mapping at
the high-level abstraction design model and operational at the low-level design
model. The rules for identifying the Spaghetti Transformation and Boat Anchor
anti-patterns are examples of relational mapping rules, while the rules for Frequent
Invocation and Return-First Command anti-patterns are examples of operational
rules.

In MUPPIT, the syntax to specify the pattern domain and perform the match-
ing in the \Anti-pattern-Detection" task is based on the Epsilon Pattern Language
(EPL) [25]. The syntax of the EPL language contains three main parts including
match, onmatch, and nomatch blocks. Listing 1 shows the EPL syntax for de�ning
a pattern.

1 pattern patternName
2 Definition of roles {
3 match : PatternSpecification
4 }
5 onmatch{}
6 nomatch{}

Listing 1 The EPL syntax for de�ning a pattern

In the above listing, the patternName is the name that is assigned to the pat-
tern. Roles are those metamodel domains, i.e., instance elements in execution time,
involved in pattern speci�cation. The match block includes a formal de�nition of
the pattern in Epsilon language. This de�nition represents a conditional constraint
on the subject meta-model (e.g., TDM meta-model), which will be satis�ed if an
instance model (e.g., TDM) conforms to the pattern de�nition. The onmatch and
nomatch blocks represent the actions that will be executed when the condition is
satis�ed or violated respectively.

As MUPPIT uses TDMs generated using transML and MeTAGeM frameworks,
the anti-patterns need to be speci�ed using the design meta-models of transML or
MeTAGeM. The initial anti-pattern repository provides EPL codes de�ning the
anti-patterns explained in this paper according to transML and MeTAGeM. These
EPL codes perform the anti-pattern matching on the target TDM. Table 1 shows
the de�nitions of the anti-patterns used in this paper as de�ned in the anti-pattern
catalogue.

Figure 7 shows the de�nition of Spaghetti Transformation anti-pattern to detect
the anti-pattern on TDMs that conforms to transML meta-model. This �gure
presents a part of the transML meta-model (the complete meta-model is shown in
Appendix, Figure 21), as well as the pattern matching rule (on the arrow). The
Spaghetti Transformation anti-pattern transformation is speci�ed as a relational

MUPPIT: A Method for Using Proper Patterns in Model Transformations 15

Table 1 The anti-pattern catalogue

Anti-pattern Anti- pattern Detection
Level of application/
Framework

Spaghetti
Transforma-
tion

mapping : Mapping :ends:select(mapend :
MappingEnd j mapend:navigable =
true):size() > 1

Relational/mapping
meta-model of
transML

Frequent Invo-
cation

\ select" :isSubstringOf (op :
Operation :body)

Operational/ Low
level design model of
MeTAGeM

Return-First
Command

\ select() :�rst ()" :isSubstringOf (op :
Operation :body)

Operational/ Low
level design model of
MeTAGeM

Boat Anchor
if (not (InputMetamodel :allInstances () :
equal(ModelRoot :Relations :source))

Relational/ high
level design model of
MeTAGeM

Fig. 7 A partial de�nition of the Spaghetti Transformation anti-pattern in EPL

mapping constraint rule at the high-level abstraction design model; hence, the
related metamodel (e.g., transML or MeTAGeM) is required for the anti-pattern
de�nition. The rule on the arrow checks if the Spaghetti Transformation anti-pattern
is presented in the instance TDM, by checking if the TDM has a mapping rule
with more than one target MappingEnd. The target MappingEnd elements are
recognized by the Boolean attribute "navigable", which has a true value for target
MappingEndTDMs. In other words, the mapping rule access more than one level
of the target meta-model or create more than one target element at once in one
mapping rule.

Frequent invocation and Return-First Command anti-patterns both address is-
sues regarding the usage of appropriate operations (e.g.,select, any) in a TDM.
These operations are part of the syntax of the transformation-code. Consequently,
the constraint rules for these anti-patterns are de�ned at the operational low level-
design metamodel. Figure 8 is part of the low-level design metamodel of MeTAGeM
(the complete meta-model is shown in Appendix, Figure 23). The �gure shows the
part related to de�ning the operations in a TDM developed in MeTAGeM. As
shown in the �gure, each element of a TDM has an operation concept. An ex-
ample of an operation concept is the \select" and \select().�rst()" operation. The
anti-pattern catalogue provides the EPL codes for Frequent invocation and Return-
First Command to explore source code of a TDM and respectively identify any
inappropriate usage of the select() and select().�rst() commands.

Boat Anchor is an anti-pattern which re�nes the high-level TDM. Table 1
shows how this anti-pattern can be de�ned for the high-level design metamodel
of MeTAGeM. This anti-pattern searches the weaving model, high-level TDM de-

	Introduction
	Background on Transformation Engineering
	Transformation Patterns and Anti-patterns
	MUPPIT: A Method for Using Proper Patterns In Transformations
	MUPPIT Implementation
	Evaluation
	Threats to validity
	Related Work
	Conclusions and Future work
	 Supplementary Images
	 Scheduling Anti-pattern and Pattern Solutions

