Next Events

Create event and sell ticket using WooCommerce

View All Events

Create Event Easily

Create events easily with U-event custom post quis nostrum exercitationem ullam corporis

Sell Event Ticket

You can sell tickets to your event using Woocommerce, it is so easy and so convenient

Create Courses

Use U-course custom post to create and manage courses for your education business

Great Support

We provide support via Ticksy system – Please do not hesitate to request support from us

Start Your Education Website With University

orem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Test Model Generation Using Equivalence Partitioning

Model transformation, in a simple definition, is a program that accepts a model as input and generates another model as output. Model transformations are the cornerstone of model-driven engineering (MDE), hence testing them and ensuring the correctness of their implementation is a critical task. A challenging aspect of testing model transformations is to generate test models that both conform to their meta-model and satisfy the defined constraints. There exist several solutions for generating test models. Epsilon Model Generation (EMG) is a language for generating appropriate test models. EMG uses random operations for producing test models, hence it is possible that some tests have the same structure and the same value, i.e., they are redundant. In this paper, we propose an approach for generating appropriate test models, i.e., test models which are valuable from the tester's point of view. In this approach, the tester specifies the number of model elements that should be generated in the test model, as well as how they are linked. Our approach is based on the idea of enriching the EMG language with equivalence partitioning technique. The idea of partitioning is that testing a member in an equivalence class is as good as testing the whole class. We have evaluated the proposed method via a case study. The results show the superiority of the proposed approach over EMG.